New Pharmaceutical Containment System in Japan

Copyright 2009 JGC all rights reserved

New Pharmaceutical Containment System in Japan

Concept for Highly Potent Materials Handling

- **GMP Requirements...**
 - To Avoid Cross contamination
- Operators Safety and Environmental Requirement...
 - To Protect Operators
 - To Avoid Environmental Pollution

JGC's Approach to Containment Design

1999, 2001	ISPE Amsterdam Conference
2001	PDA Japan Chapter
2002	ISPE Philadelphia Conference
2002	ISPE Bertin Conference
2003	ISPE Japan Conference
-	

2002~	SMEPAC* member	
2008	ISPE Containment	COP** member

* Standardized Measurement for Equipment Particulate Airborne Concentrations.

**Community of Practice

Concept for Achieving Containment Environmental **Operators** Safety Protection 88 AHU Λ / **00** Gowning Equipment **Room Air Handling**

Steps of Containment Design

Design Procedure of Facilities for Highly Potent Materials

- Step1: Limit of Exposure Level of Highly Potent Materials (Potency, Toxicity, Carcinogenicity, Sensitivity)
- Step2: Handling Status of Materials (Level 1~5)
- Step3: Required Barrier Level
- Step4: Find Optimum Combination of "Equipment" "Gowning" "Room Air Handling"
 ☆Integrated with GMP requirements (Clean Classification)

Patented: PAT. No. 4263707

Step 1. Classification of Exposure Level (PB-ECL Table)

	PB-ECL Category	1	2	3	4	5
	Exposure Level (μ g/m ³)	1000~5000	100~1000	1~100	<1	NIL
1. Active	Potency (mg/day)	>100	10-100	0.1-10	<0.1	<0.1
2. Hazard	Toxicity LD50 (mg/kgR Toxicity of Oral	Potency non toxic	2000: almost non toxic	50-500: slightly toxic	5-50: toxic	<5: highly toxic
OSHA/HC. WHMIS(Canada) Toxic Control La Ocean Pollution	Toxicit	y s 500-2000: practically	50-500: toxic 50-500: toxic 30-300: slightly toxic 50-500:slightly hazardous	<50: highly toxic <50: highly toxic <30: toxic 5-50: moderately hazardous		
	Control(GESAMP		non hazardo	us		
	Toxicity of intravenous	>100:	non toxic	7-100: toxic		<7: highly toxic
3. Others	Carcinogenicity (IARC)	_	_		2A, 2B: potentially yes	1: yes
		Carcino	ogenicity	_		
	Sensitivity	low	low-midale	middle	middle-high	high
Sensitivity						
Exposure control limit : 4					: 4	
	Exposure level < 1 // a/m ³					a/m ³

Step 3. Required Barrier Level

PB-ECL State	1	2	3	4	5
Large volume of powder				2.0	
Small volume of powder		1.0	1.5	1.5	\geq
Wet powder	0.5		1.0	1.0	2.0
Very small amount of powder or liquid		0.5	0.5	0.5	
Powder/liquid to be contained	0	0	0	0	0.5

Definition of Barrier Level

Barrier level 0	Man/environment <u>may not</u> be protected against potent compounds
Barrier level 0.5	Man/environment are <u>partially</u> protected against potent compounds
Barrier level 1.0	Man/environment are <u>fully</u> protected against potent compounds
Barrier level 1.5	Man/environment are <u>more fully</u> protected against potent compounds
Barrier level 2.0	Man/environment are <u>doubly</u> protected against potent compounds

Definition of Barrier Level

Design Criteria

For Operator

Required Barrier Level for each process

For Environment

Required Barrier Level for each process

Step 4. Optimum Combination "Equipment"

Open Booth

Safety Cabinet

Glove Box

Functional Barrier Level

0.0

0.5

1.0

Step 4. Optimum Combination "Gowning"

Typical Gowning Procedure & Functional Barrier Level

ISPE Definition	External	Unclassified	Pharmaceutical	Controlled	Clean / Critical
Gowning	General	Uniform	Uniform + Cap	Clean garments	Sterile garments
		* Shirts* Pants* Shoes	 * Cap * Shirts * Pants * Shoes 	 * Cap * Respirator * Gloves * Coat * Shoe cover 	 Coverall Boots Gloves Respirator Hood Goggles
Clean Class (In Operation)	—	_	_	Class 100,000	Class 10,000
Grade (EU-GMP)	_		_	Grade-D	Grade-B, C
Functional Barrier Level	0	0	0	0.5	1.0

Step 4. Optimum Combination "Gowning"

Gowning for Protection Against Extremely Hazardous Materials

Optimum Combination "Room Air Handling"

Separation Wall + Negative Pressure (Ducting Space) FBL : 1.0

Design Conclusion

Operators / Environment will be properly protected against hazardous materials

Follow-up Activity

Follow-up Activity is Very Important !

Procedure for Follow-up

Method

- Air sampling for working environment
- : Closed face type head by constant flow pump

Surface monitoring

: Swabbing interior and/or exterior surface of equipment, and floors of working places

•Chemical analysis to determine concentration of chemical hazards

: Established method by client

Air Sampling

Calibrated constant flow air sampling with 3 L/min

• Cassette type closed head with a PTFE 0.45 μ m pore size filter

Surface monitoring

• Standardised swab procedure previously reported :Cocker N., Extract Technology Ltd., presented in 1999 Continuing Education Amsterdam Conference

• Swab with a cloth wet by purified water

Evaluation of Weighing Glove Box

Weighing Glove Box

Evaluation of Reactor Charging

Reactor Charging

Carry-over

After Reactor Charging

Process Flow: Fluid bed Granulator

Design provision for Containment

Application (1)

Dust collector for processing machines

Application (2)

Granulation and Drying Fluid-bed Granulator

Mixing Granulator

Summary of Presentation

Hazardous Material Handling Facility should be designed ...

Based on Quantitative Method

• Considering the Optimum Combination With Primary Enclosure, Building Facility and Gowning Procedure

JGC has the unique evaluation procedure for containment performance of pharmaceutical factory ...

Verification and Follow-up of the containment performance after construction are also very important !

Thank you for your attention 谢谢!

For further contact

Chen Kaidong (陈凯东) --- JGC Corporation

Tel.:+81-45-6828518 Fax.:+81-45-6828854

E-mail: chen.kaidong@jgc.co.jp

李月阳, 余敏---沈阳药科大学 日挥GMP研究室 电话&传真:024-23986372

E-mail: <u>li.yueyang@jgc.co.jp</u>, <u>yu.min@jgc.co.jp</u>

Bag in/out dust collector

- 1. Set the filter to be replaced in the plastic bag at the outlet port.
- 2. Pull out the used filter into the plastic bag.
- 3. Sealed used filter in the bag.
- 4. Installed new filter in a closed manner.

